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Abstract. Kinetic lattice-gas models display fragile-glass behaviour, in spite of their trivial
Gibbs–Boltzmann measure. This suggests that the nature of glass transition might be, at least
in some cases, understood in purely kinetic or dynamical terms.

1. Introduction

A long-debated problem in glass physics concerns the nature of the dynamical ergodicity
breaking and its relation with the existence of an underlying equilibrium phase transition [1,2].
In mode-coupling theory the glass transition appears as a purely dynamic effect due to an
instability of the equation governing the time correlation of density fluctuations [3, 4]. In
particular, mean-field disordered models of structural glasses show that glassy features are
associated with a rugged free-energy landscape and that the origin of the dynamical transition
is the existence of a large number of metastable states which trap the system for an infinite
time [5, 6]. On the other hand, the lifetime of metastable states in finite-dimensional short-
range models is finite, since it is always possible to nucleate, by a thermally activated process,
a droplet of the stable phase. Therefore the dynamical transition appears as an artifact of
the mean-field approximation, and in real glasses this transition would be just a finite-time
kinetic effect, at least on timescales much smaller than the lifetime of metastable states.
Recently, the close connection between the non-trivial structure of Gibbs equilibrium states
and the appearance of a persistent glassy dynamics has been established for a certain class
of systems [8]. However, since the dynamical universality classes are smaller than the static
ones [9,10], and since salient features of glasses are essentially of dynamical nature [11], it is
important to understand to what extent glassy behaviour depends on the details of microscopic
kinetics. A generic microscopic mechanism leading to slow relaxation phenomena was
suggested some time ago by Fredrickson and Andersen [12]. It is based on kinetic rules
involving only a selection of the possible configuration changes compatible with the detailed
balance and the Boltzmann distribution. A kinetic rule can be so effective that there is no
need to introduce an energetic interaction between the particles. Although they are physically
motivated (e.g. by the cage effect mechanism), these kinetic models are not intended to describe
the realistic dynamics of glasses, but rather to show that the glass transition could be, at
least in principle, a purely kinetic or dynamical phenomenon. Taking advantage of this
idea we have explored the limit case of a three-dimensional lattice-gas model defined only
by short-range kinetic constraints and by a trivial equilibrium measure [13]. Remarkably,
this finite-dimensional model exhibits a fragile-glass behaviour unrelated to the existence
of a thermodynamic phase transition [13–15] (for another case and the related experimental
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situation, see [16], [17] and [18]). It provides a simple example of how the distinction between
the ideal (static or dynamic) and the laboratory (i.e. kinetic) glass transition can be very
subtle and elusive. In the following we present some numerical results showing that this
model reproduces qualitatively some aspects of the glassy phenomenology, such as history
dependence, irreversibility effects, power-law approach to the asymptotic state, and simple
aging behaviour. Some related works on constrained lattice-gas models are [19–22].

2. The model

Our starting point is a kinetic lattice-gas model introduced by Kob and Andersen [13]. The
system consists of N particles in a cubic lattice of size L3, with periodic boundary conditions.
There can be at most one particle per site. Apart from this hard-core constraint there are
no other static interactions among the particles. At each time step a particle and one of its
neighbouring sites are chosen at random. The particle moves if the three following conditions
are all met:

(a) the neighbouring site is empty;
(b) the particle has fewer than m nearest neighbours;
(c) the particle will have fewer than m nearest neighbours after it has moved.

The rule is symmetric in time, detailed balance is satisfied, and the allowed configurations have
the same statistical weight in equilibrium. Significant results are obtained when the value of
m is set to 4. With this simple definition one can proceed to study the dynamical behaviour of
the model at equilibrium. One observes that the dynamics becomes slower and slower as the
particle density ρ increases; in particular, the diffusion coefficient of the particles, D, vanishes
as the density ρ approaches the critical value ρc � 0.88, with a power law

D(ρ) ∼ (ρc − ρ)φ (1)

with an exponent φ � 3.1 [13]. Since we are interested in the dynamical approach to
the putative equilibrium state we allow the system to exchange particles with a reservoir
characterized by a chemical potential µ. Therefore, we alternate the ordinary diffusion sweeps
with sweeps of creation/destruction of particles on a single layer with the following Monte
Carlo rule: we randomly choose a site on the layer; if it is empty, we add a new particle;
otherwise we remove the old particle with probability e−βµ. The number of particles is no
longer fixed and the external control parameter is 1/µ, which plays the role of the temperature.
The equilibrium equation of state ρ = ρeq(µ) is then trivially calculated. There is therefore
a critical value µc of µ defined by ρeq(µc) = ρc corresponding to the ideal glass transition
of the model. In this way we can prepare the system in a non-equilibrium state by a process
analogous to a quench, which is represented by a jump in 1/µ from above to below 1/µc.
Or, we can let 1/µ decrease or increase smoothly like in cooling or heating experiments. The
situation becomes analogous to the canonic case in which one controls the temperature, and
the energy endeavors to reach its equilibrium value.

3. Thermodynamics

Before studying the non-equilibrium regime let us consider the static properties. This point is
relevant for the question of whether the possible ideal glass transition is purely dynamical or
is a consequence of an equilibrium transition of some sort. The Hamiltonian of the model is

H = −µ

N∑
i=1

ni (2)
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where ni = 0, 1 are occupation site variables and µ is the chemical potential. The cor-
responding partition function, for a system of volume V = L3,

Z = (
1 + eβµ

)V
(3)

would describe correctly the thermodynamics of the system provided that the measure of
configurations made inaccessible by the kinetic constraints vanishes in the thermodynamic
limit. It is possible to convince oneself that the kinetic rules, which satisfy detailed balance,
allow an initially empty lattice to be progressively filled in, leaving only O(1/L) empty sites
per unit volume. Indeed, it is always possible to find a path connecting almost any two
allowed configurations, if necessary by letting the particles escape one by one in the way in
which they got in. Therefore the Markov process generated by the dynamical evolution rule is
irreducible on the full manifold of particle configurations and the static properties of the model
are described by (3). In particular the state equation and the entropy are respectively given by

ρ = 1/(1 + e−βµ) (4)

S = −ρ log ρ − (1 − ρ) log(1 − ρ). (5)

Since the static properties of the system are regular as a function of the density or the chemical
potential, the possible ideal glass transition should appear as a purely dynamical effect. The
critical value of µ and S corresponding to the threshold density, ρc, can be estimated from the
previous equations and they are given by

µc � 2.0 Sc � 0.36. (6)

4. History dependence

Initial insight into the nature of the relaxational processes can be gained by studying the
behaviour of one-time observables (energy, specific volume, etc) in a slow annealing procedure.
We consider a compression experiment in which the inverse chemical potential of the reservoir,
1/µ, is slowly decreased at fixed rate from a value corresponding to a low-density equilibrium
configuration up to zero. The simulation results presented in the following refer to a system
of size 203. In figure 1 the numerical results for the specific volume v = 1/ρ versus 1/µ are
compared, for several annealing rates, r , with the equilibrium state equation of the system (the
smooth curve). In close resemblance with the behaviour of real glasses these curves exhibit
the characteristic annealing dependence of one-time observables: after a certain value of the
inverse chemical potential, 1/µg(r), is reached, the dynamics becomes so sluggish that the
system is no longer able to follow the annealing procedure; the faster the compression, the
sooner the system falls out of equilibrium. The limit value of v reaches a plateau that depends
on the compression rate and never seems to cross the critical value vc = 1/ρc (the horizontal
dashed line). In the inset of figure 1 we also show the same plot for a compression experiment,
but this time removing the dynamical constraints. We see that the ordinary lattice gas has no
problem in equilibrating at each value of the chemical potential µ; therefore our ‘experimental’
set-up (the way in which the particle reservoir and its connection with the system is realized)
provide a suitable representation of the equilibrium properties of the model.

4.1. Kauzmann’s paradox

Once we have obtained the experimental equation of state, we can evaluate the entropy variation
of the reservoir by numerical integration; it is given by

S(µf) = S(µi) −
∫ µf

µi

µ
dρ

dµ
dµ. (7)
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Figure 1. The compression experiment. The smooth curve is the equilibrium state equation
v = v(1/µ), while the dashed line shows the critical value of the specific volume vc � 1.13.
The compression rates are (from top to bottom) r = (1/3) × 10−4, 10−5, 10−6 in units of
(µ · MC sweep)−1. Inset: the same experiment in a system without kinetic constraints; here
the rate is r = 10−4.

This ‘calorimetric entropy’ in the presence of irreversible effects will be different from the
thermodynamical entropy Seq. Indeed, in figure 2 we see that when the relaxation time exceeds
the inverse of the annealing rate the numerical data remain consistently above the equilibrium
curve S = Seq(µ). If one were given only the dynamical data of figures 1 and 2, one would feel
tempted to extrapolate the equilibrium specific volume and entropy to lower values of 1/µ.
Then, given that both these quantities are bounded, one could conclude that the Kauzmann
‘temperature’, defined here as

1

µK
= lim

r→0

1

µg(r)
(8)

is different to zero and therefore that there has to be a static transition. This is the usual
argument, known as Kauzmann’s paradox, according to which the glassy state is related to
the existence of a thermodynamic phase transition. Of course, here there is no such static
transition: in this simple case we have access to the complete equilibrium curves, which are
perfectly analytical though they change in concavity rather sharply. Irreversibility effects are
also evident when we let 1/µ perform a cycle: in this case the specific volume appears to
follow a hysteresis loop whose area decreases as the compression speed decreases (figure 3).

5. Structural relaxation

We now turn to the behaviour of the system after a sudden quench to a subcritical value
1/µ < 1/µc. In order to allow the system to reach the asymptotic regime more rapidly we
perform a ‘gentle’ quench, i.e. starting from a configuration with density 0.75 corresponding
to a chemical potential closer to µc.
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Figure 2. The calorimetric entropy as obtained by integration of compression experiment data.
The smooth curve is the equilibrium entropy S = S(1/µ) while the dashed line shows the
critical value of the entropy Sc � 0.365. The compression rates are (from top to bottom)
r = (1/3) × 10−4, 10−5, 10−6.

Figure 3. Hysteresis cycles in a ‘cooling–heating’ experiment. The lower branch of the cycles
represents the decompression. The annealing rates are (from top to bottom) r = (1/3)×10−4, 10−6.

Figure 4 shows the time relaxation of the particle density after a subcritical quench at
1/µ = 1/2.2. We see that ρ never exceeds the threshold ρc, but rather approaches it like a
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Figure 4. Time relaxation of the excess density after a subcritical quench, δρ = (ρc −ρ)/(ρc −ρ0).
The straight line is δρ ∼ t−z with z � 0.3.

power law in time:

ρc − ρ(t) ∼ t−z (9)

where t is the time elapsed after the quench and where the exponent z � 0.3. Therefore the
diffusion coefficient D of particles after a subcritical quench vanishes as

D(t) ∼ t−ζ (10)

with the exponent ζ = zφ quite close to one. This is closely related to the aging behaviour
observed in the two-time mean squared displacement of particles, B(t, s). Indeed, in a simple-
minded approach such a quantity would be given by

B(t, s) =
∫ t

s

dτ D(τ) (11)

from which follows the simple logarithmic aging

B(t, s) ∼ log(t/s) (12)

in good agreement with the numerical results and the analytical solution of the associated
singular diffusion model [15]. Since the size of the system considered here is finite, equilibrium
will eventually be reached (since almost any two allowed configurations can be connected by
a path of allowed moves), but with times which grow quickly as L → ∞.

5.1. Activated processes

It is interesting to investigate the role of activated hopping processes in the low-temperature
phase of glassy systems since they are responsible for restoring the ergodicity broken at the glass
transition, and it is important to know the characteristic timescale on which this equilibration
process takes place. As pointed out in reference [13], the activation processes can be simply
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implemented in this model by allowing the violation of the kinetic constraint with a given
probability p. Figure 5 shows an example of a v versus 1/µ plot in a compression experiment
at fixed annealing rate for several values of the activation probabilities, p. As expected, in this
case the system becomes able to cross the threshold and, after a certain value of p, p∗, it follows
the full equilibrium curve; we can also see that, for p below p∗, the dependence of the relaxation
time on 1/µ is not affected by p, since the annealing curves depart from the equilibrium one
at approximately the same point. The relation between the activation probability p∗ and the
equilibration time is better characterized by looking at behaviour of the density after a sudden
quench. In figure 6 the relaxation curves in the presence of activated processes are compared
with the one obtained previously for p = 0 (figure 4). If we conventionally define the ergodicity
time, τerg(p), as the time at which the curves with p 
= 0 depart from the one at p = 0, it
appears that this characteristic time follows a power law, τerg(p) ∼ p−α , with an exponent
α � 1. A similar result was obtained by Castellano and Franz [23]. This seems to provide
further evidence of the existence of a purely dynamical glass transition in this model.

Figure 5. The compression experiment in the presence of activated hopping processes for a fixed
annealing rate, r = 10−5, and different activation probabilities p = 10−k with k = 1, 2, 3, 4.

6. Conclusions

To summarize, we have shown that three-dimensional lattice-gas models defined by short-range
kinetic constraints and trivial equilibrium Boltzmann–Gibbs measures display many features
of the fragile-glass behaviour. Glassy phenomena may therefore have a purely dynamical or
kinetic origin unrelated to an underlying equilibrium phase transition, even in finite dimensions
and in the absence of metastable states. If this kinetic model exhibits a true dynamical transition
it would provide a microscopic realization, in finite dimensions, of the mechanism invoked by
the ideal mode-coupling theory for the glass transition. Of course, it is hard to establish the
existence of such a dynamical transition from numerical simulations. Indeed, a comparison
with the backbone percolation problem shows that the linear size dependence of the critical
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Figure 6. Density relaxation in the presence of activated hopping processes: p = 10−k ,
k = 1, 2, 3, 4, 5 (from left to right); the continuous line represents the data with p = 0. The
subcritical value of the quench, 1/µ = 1/2.2, corresponds to an equilibrium density ρ � 0.9.

threshold cannot be faster than [13]

1 − ρc(L) ∼ 1/log(log L). (13)

Therefore, even if limL→∞ ρc(L) = 1 (i.e. there is no ideal dynamical glass transition), the
length scale over which such a value would be observable is not experimentally accessible. In
this respect, the emergence in purely kinetic models of a well defined macroscopic effective
temperature [24] associated with the violation of the fluctuation-dissipation theorem appears
quite surprising [25]. Indeed, given the non-holonomic nature of kinetic constraints and the
trivial Hamiltonian of the model, it would be interesting to understand whether a statistical
mechanics approach based on the calculation of some restricted partition function is able to
predict the features of the glassy phase and in particular the value of the so-called fluctuation-
dissipation ratio. A first step in this direction would consist in defining a kinetic analogue of
the metastable states by considering, for example, as metastable those system configurations
where all particles are blocked by the kinetic constraint, and then finding a way to count them.
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[16] Renner C, Löwen H and Barrat J-L 1995 Phys. Rev. E 52 5091
[17] Obukhov S, Kobzev D, Perchak D and Rubinstein M 1997 J. Physique 7 563
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